Trigger Mediator Documentation

What is a Trigger Mediator?

A Trigger Mediator is a program that mediates trigger requests between the iSeries Database (DB2) and a trigger service programs. By mediate, we mean, DB2 calls the trigger mediator and the mediator, in turn, calls the correct trigger service program. It “Mediates” all requests.

By using a mediator, we have the ability to, remove all tables from triggers, activate triggers on all tables, add new table to triggers, remove a table from triggers, all instantly.

Triggers are powerful tools to capture changes made to the DB2 database but triggers have several problems that make them difficult to use.

1. Triggers put an exclusive lock on the trigger program. It cannot be removed except by removing the trigger from the table. If errors are detected in the trigger program, they cannot be corrected without removing the table from triggers.

2. Triggers put an exclusive lock on tables when they are under trigger control. They cannot be deleted or changed while under trigger control.

3. When enabling a trigger, you must put the name of the individual program to call for each event, Add, Update, Insert.

4. The only way to disable triggers is to remove triggers from all tables.

5. Triggers cannot be disabled except by removing the trigger from the table and then adding the trigger back.

6. Triggers can represent security risks.

The Trigger Mediator solves all these problems.

Notes on Operation.

This version of the mediator supports recursion. By that we mean a trigger service program can issue an Add, Update or Delete that invokes the trigger mediator again. A few lines of C that form the entrance procedure support this.

How does the Trigger Mediator work?

The Trigger Mediator consists of a single program TG_MED that is called for all trigger requests. For example,

ADDPFTRG FILE(LIBX/FILEX) TRGTIME(*BEFORE) TRGEVENT(*INSERT) PGM(LIBX/TG_MED)

ADDPFTRG FILE(LIBX/FILEX) TRGTIME(*BEFORE) TRGEVENT(*DELETE) PGM(LIBX/TG_MED)

ADDPFTRG FILE(LIBX/FILEX) TRGTIME(*BEFORE) TRGEVENT(*UPDATE) PGM(LIBX/TG_MED)

In this scenario, each time before a record is inserted, deleted or update, DB2 will call the trigger mediator. It is up to the programmer to determine whether to call the trigger before or after or what events to monitor just as long as all trigger requests go through the trigger mediator.

It is up to programmer or administrator to do the ADDPFTRG command and add the triggers to the database. I have been thinking about add a command to the ADD/EDIT/DELETE screens to ask if the user would like to add the triggers to the physical file but have not had time to add it. IBM recommends that the trigger program be in the same library as the physical file. If this is not possible, make sure if you restore databases, that the Trigger Mediator program (TG_MED) gets loaded first. The trigger service programs can be loaded at anytime as long as everything is there before the first time the mediator is called.

Tables and a single user space are maintained by program TG0001 to tell the trigger mediator what trigger service program and procedure to call to carry out the trigger request and whether triggers are active.

User space TG_CTRL_HD, maintained through program TG0001, controls trigger activation and trigger changes and has the following format defined through file TGCTRLH:

THACTIVE – Triggers active Yes(Y) or No(N). If set to No, triggers are turned off for all tables.

THRELOADTS – Reload time stamp. Anytime changes are made and updates are needed, time stamp is updated. Trigger mediator sees change and updates internal tables.

THRELOADUS – User Profile of user who caused the trigger data to be reloaded.

Table TGCTLD contains one record for each table in one library that you want to maintain a trigger on with the following format:

TDFILENAME - File name to put trigger on.

TDLIBNAME - Library file is in.

TDACTIVE - File active? Yes(Y) or No(N). If flag is changed to No through TG0001 and update is set, file is removed from triggers instantly. If set to Yes and update is set in TG0001, file is instantly available for triggers.

TDSRVPGM - Name of service program to process request.

TDSRVLIB - Library service program is in. Can be *LIBL.

TDSRVPROC - Name of service program procedure to call. The procedure name can be unique or it can be the same name in all service programs. It does not matter.

TDCRTSTAMP - Timestamp with date and time record created.

TDCRTUSER - User profile that created record.

TDEDTSTAMP - Time with date and time last edited.

TDEDTUSER - User profile that last edited record.

Notes on TG0001

I wanted to briefly discuss the concepts behind program TG0001, the trigger maintenance program.
When doing analysis of screen programs it becomes obvious that there are really a small number of types of screens. I can summarize these as:

Standard Menu Panel

Standard Edit Panel

Single Page Load Subfile

Load All Subfile.

Standard Add/Change/Display Panel

 Delete Confirm Subfile.

There are others but these are the major types. TG001 implements the following:

TG0001_M01 = Standard Menu Panel

TG0001_M02 = Standard Edit Panel

TG0001_M03 = Single Page Load Subfile.

TG0001_M04 = Add/Change/Display Panel

TG0001_M05 = Delete Confirm Panel.

I am using ILE concepts to develop these panels. Rather than creating one huge program with all the different pieces from each module contained in one program, each panel is a separate module. The code was developed to be as structured as possible.

This means that you can clone a module for use in another program and only need to change a few lines of code. Most of the code in the module is the same program to program.
Anyway, that is the design ideas behind TG0001. I can then use this program to clone and make new programs with very little changes. Something to keep in mind.

Note, also, that TG0001 uses SQL to implement I/O. I was pleasantly surprised to find that using SQL for I/O in screen program was actually easier than using File I/O and when used with a user space much faster.
So these programs also provide examples of using SQL with a user space.
Maintaining, Activating and Updating Trigger Tables

All trigger maintenance except physically adding the trigger mediator program to the physical tables, is done through program TG0001.

Calling TG0001 presents the following screen:

[image: image1.png]6/16/08 16:42:02

F3=Exif

FI2=Exit

Maintain Trigger Control Data
MAIN MENU

Maintain Trigger Control Data.

Maintain Detail Trigger Control Records.

option: B

TG0001.RD0O1_01

Option one allows you to maintain the trigger control data.

[image: image2.png]6/16/08 16:42:23 Maintain Trigger Control Data TGO001.RD01_02
MAINTAIN TRIGGER CONTROL

Triggers Active

Reload Trigger Data?: N

06/13/2008
10:22:17

F3=Exiy [F12=Exi{

Triggers Active turns triggers on and off for all tables.

When changes are made to the trigger data, changing the Reload Trigger Data flag causes all the trigger information to be refreshed in all tables using the Trigger Mediator.

So if triggers are not active, you wish to make them active, you would change the Triggers Active to Yes(Y) and set Reload Trigger to Yes(Y). Any users having the trigger program open are refreshed the next time the Trigger Mediator is called.

Option two call the trigger table maintenance.

[image: image3.png]6/16/08 16:43:17 Maintain Trigger Control Data TGO001.RD01_03
MAINTAIN FILES ON TRIGGERS

Type option, press Enter Current Position to: CAPTURE
R=Edit B=DeTetq [Ff=DispTlay New Position to

Service ----
Program Library Procedure
TS000 ALANC TRIGGERSERVICE
TS000 ALANC TRIGGERSERVICE
TS0002 ALANC TRIGGERSERVICE
CAPTUREO4 ALANC TS000 ALANC TRIGGERSERVICE
CAPTUREOS5 ALANC TS000 ALANC TRIGGERSERVICE

File Name Library A
Y
Y
Y
Y
Y

CAPTUREO6 ALANC Y TS000 ALANC TRIGGERSERVICE
Y
Y
Y
Y
Y
Y

CAPTURE ALANC
CAPTUREO1 ALANC
CAPTUREO3 ALANC

CAPTUREO7 ALANC TS000 ALANC TRIGGERSERVICE
CAPTUREO8 ALANC TS000 ALANC TRIGGERSERVICE
CAPTUREO9 ALANC TS000 ALANC TRIGGERSERVICE
CAPTURE10 ALANC TS000 ALANC TRIGGERSERVICE
CAPTURE1l ALANC TS000 ALANC TRIGGERSERVICE
CAPTURE12 ALANC TS000 ALANC TRIGGERSERVICE

F3=Exit Progran [F5=Refresh [6=Add File Namg [12=Previous Screen

Pressing F6 add a table name.

[image: image4.png]Maintain Trigger Data TGO001.RD01_04

ADD RECORD|

Service Program
Service Program Library
Service Procedure

F3=End Progran [12-Previous Screen

Add the name of the table and the library the file is located in. You can enter a table name and not make the table active for triggers or if a table is active for triggers, you can remove it from triggers by changing the Active for Triggers Control to No(N).

This is important. After you make changes, you need run option 1 and request a reload. If you do not request a reload, only new users will see the changes when they start up the programs. Requesting a reload causes the Trigger Mediator to reload all tables the next time the mediator is called.

In addition, you enter the name of the trigger service program, library program is contained and the procedure name (See template TS0001 for example of trigger service program. Just clone it and add your own logic.

The library of the trigger service program can be *LIBL. In addition, you can use the same procedure name in all trigger service programs and you could even have different versions of a same trigger service program. The trigger doesn’t care about the name except to resolve the object. If you point to different library for the program, you can have two different versions of the same named trigger service program loaded at the same time.

From this same screen, you can add, edit and delete tables from the trigger system.

If you attempt to delete a table, you will get a delete confirmation.

Hopefully this is as clear as mud.

I can be reached at:

Alan Campin

 (253) 266-7676 (Cell)

alan0307d@bigfoot.com
